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Methods to estimate the number of degrees of freedom of chaotic dynamical systems suffer from
intrinsic errors. The errors are due to the finite extent of phase space and are felt at any finite
number of phase space points. We compare the errors of two methods to extract dimensions from
scaling properties. One is based on the scaling of the number of points in spheres with varying
radius and the other one concerns the scaling of the radius of spheres that contain a varying number
of points. We argue that the latter method is preferable and we derive an analytic expression for
the error. We compare both this systematic error and the error due to statistical fluctuations in
different realizations of random sets to the results of numerical simulations.

PACS number(s): 05.45.4+b, 47.53.4+n

I. INTRODUCTION

Temporal disorder in physical systems can be caused
by the nonlinear interplay of just a few degrees of free-
dom. The estimate of a lower bound of their number from
a signal produced by the system is a worthwhile goal. If
this number indeed turns out to be small, one could try to
determine the unstable periodic orbits of the system, try
to influence the system by stabilizing these orbits, try to
predict future states of the system, or even try to find a
model in the form of nonlinear ordinary differential equa-
tions. The estimate of the number of degrees of freedom,
therefore, is a first step towards a better understanding
of the source of disorder.

The dimension estimates that we will discuss in this
paper are based on scaling arguments. For example, the
well known Grassberger-Procaccia correlation integral [1]
is the scaling of the number C(r) of phase space points
in balls of radius r, C(r) ~ P, where D is the dimen-
sion of the phase space. An alternative way, the prac-
tical implementation of which predates the Grassberger-
Procaccia algorithm (GPA), is based on the scaling of the
radius 7 of balls that contain a given number of points k,
r(k) ~ k*/P [2]. The first method is called a fixed size
method, the second a fixed mass method.

For a given number NV of phase space points, the fluctu-
ations of the scaling function C(r) increase with decreas-
ing r. This is because the filling of phase space becomes
increasingly sparse at smaller distances. On the other
hand, at large distances the boundary of phase space is
felt. Scaling behavior, therefore, is restricted to an inter-
val bounded by these extremes. The problem is that the
scaling region shrinks rapidly with increasing dimension
of phase space.

Crudely, the nearest neighbor distance in D dimensions
is 61 = N~Y/P and the average distance to the boundary
of a D-dimensional hypercube is §2 = 1/(2D + 2). With
increasing D the size of the scaling interval for a given
number of points N shrinks to zero if §; = J2, or
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The number of phase space points where the scaling inter-
val has just collapsed increases superexponentially with
increasing dimension.

Smith [3] pointed out the restriction on the accessible
range of dimensions. The simple Eq. (1) was refined by
allowing for an error in the estimated dimension and re-
quiring a finite scaling dynamic range. Nerenberg and
Essex [4] argue that Smith’s approach is too restrictive.
Scaling may actually extend to distances smaller than §;
and distances larger than ;. For the correlation inte-
gral C(r), the small-distance limit is then given by the
maximum allowable statistical fluctuations of C(r).

As was realized in [4], the effect of the proximity of
the phase space boundary is not a sharp cutoff at large
scales but is felt at all values of ». Therefore, the effect of
the boundary proximity is to introduce a deviation from
scaling that, unlike the expression for §2, depends on V.

Compared to the correlation integral, the scaling of
fixed mass methods extends to the smallest mean nearest
neigbor distance of the set and is not a compromise in-
volving the size of statistical errors. For fixed mass meth-
ods, the lower bound is close to §; but scaling extends to
much larger distances. It is therefore a worthwhile goal to
estimate the boundary error for this method. However,
because the distance is now the dependent variable, the
effect of the proximity to the boundary is much harder
to estimate.

Geometric limits on scaling are but one problem in
detecting the presence of low-dimensional chaos in ex-
perimental data. We have designed an expression for the
boundary effect for data that consists of white noise that
is uniformly distributed in hypercubes. However, it is
well known that the correlation integral for colored noise
can lead to spuriously small dimensions [5].

The scaling of asymptotic orbits of dynamical systems
concerns their organization in phase space. A point in
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phase space represents the projection of the system on
(maybe linear) modes of motion. In theory, a faithful rep-
resentation of the instantaneous state of a D-dimensional
system with at least D independently measured projec-
tions could be bypassed by embedding a measured time
series [6]. The proper choice of embedding parameters
presents yet another problem in an estimate of D from
a time series [7]. We will not dwell upon the question
of embedding because we believe that well instrumented
experiments in physics can actually measure spatially dis-
tributed information that can be put to use to more ef-
fectively reconstruct the underlying phase space.

In Sec. IT we will review the analysis of Nerenberg and
Essex [4]. In Sec. III we give a brief derivation of the near-
neighbor (NN) method and we examine the geometrical
effects that lead to systematic errors. For an analytical
calculation we have been forced to make some approxi-
mations. We check our analysis in Sec. III by comparing
its results with those of numerical simulations involving
random white noise.

II. CORRELATION INTEGRAL

The correlation dimension d. derives from the scaling
with r of the average number of points C(r) in spheres
with radius 7, C(r) ~ r? [1]. Practically, one fixes the ra-
dius 7 and measures the mass contained in those spheres.
Therefore, r is the independent variable and C is the
dependent one. This observation serves to distinguish
the correlation integral (GPA) from fixed mass methods,
where the role of independent and dependent variables is
exchanged.

The correlation integral C(r) is defined as

N
C(r)zh}ignooﬁzz— > 0 = —xj), (2)

i<j=1

where ©(r) is the Heaviside step function and the x;’s
are state vectors in the system’s phase space. Figure 1
shows the correlation integral for N = 10* points that are
distributed randomly in a D = 6 dimensional hypercubic
space. It is seen that before the slope of C(r) in a log-
log plot starts approaching its nominal value d. = 6 at
small distances, the size of its fluctuations has increased
catastrophically.

The range of distances r over which scaling can be ob-
served is bounded from above by the proximity of the
phase space boundary. The reason is that for radii r
that are comparable to the total size of phase space R,
the correlation integral C(r) no longer increases with r.
For a finite number of phase space points N, the value
of C(r) at small distances is strongly fluctuating due to
the sparseness of points at small scales. Therefore, the
behavior of C(r) at small distances cannot be used to
extract a dimension. Based on the idea that a dimension
derived from scaling acquires a systematic error when
these two regions have started to overlap, Smith [3] de-
rived a criterion for the minimum number of points Nmin
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needed to be able to conclude a dimension D within 5%,
Npin = 42P.

In [4] an attempt is made to quantify more accurately
the error in the correlation dimension of finite size data
sets. The key point is the shape of the correlation func-
tion in the presence of boundaries. An equation was de-
rived for C(r) in the case of D-dimensional hypercubic
spaces that are uniformly filled with points. Using this
formula, an estimate was made for the dimension under-
estimation for a given IV and D. The dimension error has
two contributions: one, Apd., due to the boundary prox-
imity and one, A,d., due to the statistical fluctuations
of the value of the correlation integral.

The systematic part of the dimension error A,d, can be
made smaller by moving the interval [ro, {ro] over which
the slope of C(r) is determined in a log-log plot to smaller
ro. However, C(r) at the smallest values of r is most
affected by statistical fluctuations and the contribution
A,d, to the error in d. will be largest. A compromise
between the two types of error then leads to an optimal
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FIG. 1. (a) Correlation integral C(r) for N = 10* points
distributed randomly in a hypercubical space with dimension
D = 6. (b) Local slope of scaling curve of (a).



4134

choice of the interval [ro, &ro].

In the next section we will demonstrate that no such
compromise is needed for the fixed mass method, and we
will derive an expression for the dimension error in this
complementary method.

III. NEAR-NEIGHBOR METHOD

The near-neighbor (NN) method for estimating the di-
mension of a set is concerned with the scaling of the mean
near-neighbor distance § as a function of the size n of
the set and as a function of the neighbor order k (nearest
neighbor is £ = 1, next-nearest neighbor is k£ = 2, and so
on). Crudely,

8(n, k) ~n~Y/PE/D, (3)

A more precise analysis involves important finite-size cor-
rections that play an explicit role in the resulting scaling
functions. These corrections are important for small val-
ues of k. Also, the fixed radius method has finite size
corrections, but those disappear for the correlation inte-
gral (which is but one version of the fixed radius method)
[8]-

Let us assume that we have a set of IV points that are
distributed uniformly in a D-dimensional phase space.
Consider a subset of n phase space points from the origi-
nal set and a reference point ¢. The probability to find &
elements of this subset within a radius r of the reference
point ¢ is

sitrikm) = () pb—po . (@)

Here p; is the probability to find one phase space point
of the subset in a sphere of radius r around i. This prob-
ability is proportional to the ratio of the volume of the
sphere and the volume of phase space p; = pKprP with
p = (VpRP)™1, and Kp = (m)P/2/T(1 + D/2) the vol-
ume of the unit sphere. The geometrical factor Vp is
Vp = 2P for a hypercubic space and Vp = Kp for a
hyperspheric space. It is important to notice that near
each of the reference points ¢, we have assumed the prob-
ability p; to scale as p; ~ rP. Therefore, we ignore the
issue of multifractality which we believe is a moot point
when trying to estimate the nearest integer value of the
dimension of a large-dimensional attractor.

The probability to find the kth near-neighbor with a
distance between r and r+dr from the point i is the prob-
ability to find k — 1 elements within the sphere around
the point ¢ times the probability to find the kth element
of the set in the spherical shell [r,r+dr]. This last proba-
bility is proportional to the volume of the hyperspherical
shell times n.

F,i(r; k,n)dr = S'i(r; k—1, n)npDKDTD—Idr
= npDKprP—1
y (npKprP)*=1 exp(—npK prP)

L'(k)

dr, (5)

MACHIEL de ROVER AND WILLEM van de WATER 51

where we have used the Poisson approximation for
Si(r;k — 1,n), for large values of n, n > k, such that
(1 —p;)"* =~ exp(—np;) and (k’il) ~ n*~1T'(k). Av-
eraged over different realizations of the distribution of
n points over the attractor, the value of the kth near-
neighbor distance of reference point ¢ is

r,-(k,n):/ dr rP;(r; k,n)
0

L'(k+ 5
- S B mprp) /2. ©)
For a single reference point i, Eq. (6) defines the point-
wise dimension. A more adequate definition will more
faithfully sample the attractor, and an average over ref-
erence points needs to be done [9]. Here we will use a
simple linear average. Averaging r;(k,n) over M refer-

ence points defines r(k,n) = 3 Zf_/l__l r;(k,n). For large
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FIG. 2. (a) Full line: nearest neighbor distance §(n) for
N = 10* points distributed randomly in a hypercubical space
with dimension D = 6. Dashed line: prediction of Eq. (11).
Dash-dotted line: prediction of Eq. (11) without correction for
the effect of the boundary proximity. (b) Local dimensions
that follow from scaling curves in (a), where the slope is the
local slope of the scaling curves in (a).
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k we have I'(k + &) /T'(k) ~ k'/P and we regain Eq. (3).
Scaling behavior can be found by measuring the n depen-
dence of r(k, n) at fixed k or by studying its k dependence
at fixed n. As the latter involves finite size corrections for
finite k [the factor I'(k+1/D)/T’'(k)], we will concentrate
on the first. Incidentally, these finite size corrections are
trivially accounted for in a fitting procedure that is used
to derive d,, from a log-log plot of r(k,n) vs k [10].
More general averages, that are averages of r; raised
1
—1\17 Zf‘il T;Y(k’n)) /’77 lead
to a whole spectrum of dimensions D? [10,11]. For the
correlation integral q takes the value ¢ = 2. For the
scaling of nearest neighbor distances that are averaged
with v = 1, the value of ¢ depends on the dimension as
q =1—-1/D. Effectively, therefore, the dimension that is
estimated with the near-neighbor method is close to the
information dimension when D is large. It can be shown
that for all choices of +, the value ¢ = 2 is an upper limit
[10].

Practically, the NN method is implemented by first
selecting randomly a set of reference points. Next, a ran-
dom subset of n points is selected from the total number
of N phase space points and the near-neighbor distances
to each member of the set of reference points is com-
puted. The number n is (exponentially) increased and
the process is repeated. Of course, when the size n of the
subset approaches the total number of points N, subse-
quent random sets are no longer independent. One would
expect that these dependencies affect the scaling; how-
ever, we have found this effect to be negligible. We have
designed an analytical model for it whose results are con-
sistent with those of numerical simulations.

Figure 2 shows a scaling curve of the nearest neigbor
distance §(n) = r(k = 1,n) for a uniform random dis-
tribution of 10% points in a six-dimensional unit cube.
Clearly, the slope of the scaling curve for the largest
n tends to the nominal value —1/6, but is everywhere
smaller. The corresponding value of the estimated di-
mension, therefore, is always smaller than 6. The scaling
curve of Fig. 2 is complementary to the correlation inte-
gral: the slope most closely approaches —1/6 where its
statistical fluctuations are smallest . Because the aver-
age is taken over distances, the smallest distance of Fig.
2 is much larger than the smallest r of Fig. 1, which is
the pair distance of the single, most dense spot of the
attractor. On the other hand, the scaling of the near-
neighbor distance extends to much larger r. Unlike for
the correlation integral, there is no ambiguity as to the
relevant scaling range of near-neighbor distance curves;
it is [N/€, N|], where ¢ is the scaling dynamical range.

to a certain power, r(k,n) =

A. Dimension error

To understand the reason of the underestimation of the
dimension, we notice that the volume of hyperspheres
that intersect the boundary of phase space is reduced.
Crudely, the nearest neighbor distance is given by the re-
quirement that nC(r) = 1, where C(r) is the probability
to find one point in a sphere with radius ». When n is
small, r is large and the chances that such a sphere inter-

sects a boundary are large. To compensate for the volume
reduction due to the intersection, 7 becomes larger com-
pared to the situation where no boundaries are present.
Conversely, when n is large, the probability for inter-
section is drastically reduced, and r approaches the un-
bounded situation. Therefore, the boundary effect causes
the slope of the scaling curve Ind(n) versus Inn to be
more negative, resulting in an underestimate of the di-
mension.

Naively, the fraction of reference points that see the
boundary decreases with decreasing r as r?~1. There-
fore, it is in principle possible for fixed radius methods
to exclude from the average at given r those reference
points that are closer to the boundary than r. Because
r in the near-neighbor method is the dependent variable,
no such separation in points whose apparent neighbor-
hood scaling is not affected by the boundary proximity
is possible. This circumstance also makes an analytical
estimate of the boundary effect for the NN method much
harder. Such an analytical estimate is precisely what is
attempted here.

From now on we will consider nearest neighbors (k = 1)
only and we will accordingly drop the k dependence. The
effect of the boundary is that the function r;(n) depends
on the location of the reference point ¢ with respect to the
boundary. Because we will consider intersections with
a single bounding hyperplane only, r;(n) only depends
on the distance ! of the reference point 7 to its nearest
phase space bounding hyperplane. Therefore, we define
a function 7(I;n) = r;(n). The phase space average then
takes the form

R N
5(n) = / dl g(1)7(L; m), ()

where the geometric structure factor g(I)dl expresses the
probability to find a reference point that has a distance
I’ to the nearest boundary, with !’ in the interval I’ €
[{,1+dl]. For homogeneously and isotropically randomly
filled hypercubic or hyperspheric spaces with linear size

R this is
=235 ®

The function 7(I;n) is the near-neighbor distance of ref-
erence points that are at a distance ! from the boundary.
The | dependence of this function merely expresses that
the scaling for reference points near the boundary will
be different from points in the interior of the phase space
volume. For a reference point at a distance ! from the
boundary, the probability to find a nearest neighbor at
distance 7 in a set of n points is a slight generalization of

Eq. (5),

P(r;il;n) = npa—‘%:—’l—) exp [—npV (r;1)], (9)
where V(r;l) is the volume of a sphere of radius r with
its center at a distance [ from the boundary. For r < [
the sphere does not intersect the boundary and we have
V(r;l) = Kpr?; for r > 1 the volume V(r;l) is the
volume of a chopped hypersphere.
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For the calculation we take for the phase space a D-
dimensional randomly filled hypercube with edge length
2R or a hypersphere with radius R. The hypercube is
bounded by 2D different hyperplanes; the hypersphere
by a single spherical boundary.

For a reference point that is at a distance ! from the
boundary, the expression for the ensemble-averaged near-
neighbor distance 7(l;n) separates into two terms, one
where the presence of the boundary is not yet felt, and
one that involves the volume of a chopped sphere around
the reference point:

1 2R-1
F(l;n):/;dr rP(r;l;n)+[ drrP(r;l;n). (10)

Note that the upper integration limit 2R — I of the sec-
ond integral is given by the restriction that in the case
of hypercubical spaces we consider intersections with a
single boundary only. In general, multiple intersections
lead to the necessity of evaluating (2D + 1)-fold integrals
for 7(l;m), in which case calculations would no longer be
tractable. The error resulting from our approximation of
the volume will be largest for large r and large D, where
we overestimate the volume of the hypersphere around
reference point ¢. However, because of the exponential
behavior of P(r;l;n), the effect on #(I;n) for large r in
the integration will be small. The effect of our approx-
imation of the chopped volume will, however, become
sizable for any r at large D. This is because in high-
dimensional phase spaces most points are near the edge
of phase space. Finally, for a hyperspheric space we will
neglect the curvature of the boundary for » > [. This
again will result in an overestimate of V(I;7), especially
for large 7 and large D. The given expression for 7(I;n)
needs to be averaged over phase space using the struc-
ture factor g(!). Both the computation of 7#(I;n) and the
averaging are described in the Appendix with the simple
result Eq. (A11),

§(n) =n"YP A, (D) + n~ 2P Ay(D), (11)

with

Ay(D) = RI‘(%) [(KZD_l)Z/D A(D) - (Z—’;)w} ,

(12)

and where the function A(D) is explicated in Eq. (A12).
The effect of the boundary is given by the second term of
Eq. (11). Because it is O(n~2/P) and the regular scaling
is O(n~Y/P), the relative effect of the boundary on the
scaling function vanishes as n~/P for large n.

From Eq. (11) we compute the dimension d,, by fitting
a straight line in a plot of Iné(n) versus Inn over an
assumed scaling interval [V/{, N]. Obviously, however,
Eq. (11) does not display simple scaling behavior, but our
choice is motivated by the standard practice of analyzing
experimental data.
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In(N) — In(N/£)

b = s (N) — Ind(N/E)"

(13)

The boundary effect leads to a systematic error Apd,, =
d,, — D in this dimension estimate,

43(D) 1 /p1— €Y7
A1(D) Ing
1/p A2(D)

A,(D)’

Apd, = D?

~—-DN~ (14)

where we have assumed that [N~/P A,(D)/A,(D)| < 1.
In the Appendix we will show that A,(D) is positive;
therefore, the error has negative sign. In agreement with
our qualitative arguments the proximity of the boundary
leads to an underestimate of the dimension.

Apart from the systematic error on the dimension due
to the boundary proximity, there exists a statistical er-
ror due to the fluctuations of the near-neighbor distances
in different realizations of D-dimensional random sets.
Unlike for the fixed radius method (the correlation inte-
gral), however, the choice of the scaling interval does not
depend on this statistical error. It is precisely this cir-
cumstance that renders application of fixed mass (near-
neighbor) methods less ambiguous than dimension esti-
mates with fixed radius methods. The scaling interval is
simply located at the smallest possible distances (largest
possible n), where the statistical error and the errror due
to the boundary proximity are smallest.

An estimate of the statistical error in é(n) due to
sample-to-sample fluctuations can be computed from
the distribution function of near-neighbor distances
P;(r;k,n), Eq. (5),

AS; = [/Ooo r2P;(r; k,n)dr — (/0oo rP,-(r;k,n)dr) 2}

(15)

1/2

We assume that these fluctuations are uncorrelated for
different reference points. The statistical contribution
Agd,, to the dimension error then is

2D i/ 1

Aol = e N R AT 1/D)

x [[(1+2/D)-T2(1+1/D)]"?,  (16)

where the factor N~1/2 is the reduction of the statistical
error due to the average over N reference points.

B. Numerical results

We have used numerical simulations to ascertain our
estimates of systematic dimension errors. In these sim-
ulations we have randomly filled D-dimensional hyper-
cubes and hyperspheres with N points. All N phase
space points are used as reference points. No average
was done over different random subsets. Such an aver-
age will only work at small sizes n and serves to reduce
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the fluctuations in the scaling function such as shown
in Fig. 2(b). However, the dimension is estimated using
the large-n behavior of the scaling function. Averaging
over subsets at large n is not effective because different
subsets are then no longer independent.

In Fig. 2 the analytic expression for §(n) [Eq. (11)] is
compared to the result of a numerical simulation. It is
seen that the addition of the term O(n~2/P) not only
results in a better approximation of the local slope, but
also in a better approximation of the absolute size of (n).
Of seven realizations of random sets with 1 < D < 10 and
N = 10* we have measured the apparent dimensions d,,
and the error Ad,, = d, — D. It is important to notice
that we have not used embedding of a random time series
in D dimensions using the method of delays [6].

In Fig. 3 the results of simulations on hypercubes are
compared with the prediction of Eq. (14). Our analytic
estimate of the boundary proximity effect is for values of
D up to 6, in good agreement with the result of the sim-
ulation. The apparent dimension of our simulated phase
space fluctuates from realization to realization. The size
of the fluctuations decreases with increasing &, i.e., with
enforcing a larger dynamical range. The result for an
analogous simulation but now for hyperspherical spaces
is shown in Fig. 4. Clearly, our analytic expression Eq.
(14) performs better for hypercubical spaces. For other
choices of N and £ the results are the same.

In the case of phase spaces with a hyperspherical
boundary there does not exist the problem of finding out
with which of the bounding surfaces the neighborhood
sphere intersects and it is possible to improve upon our
analytic formula. The result of a numerical evaluation of
Eq. (A3) is also shown in Fig. 4. It is in better agreement

Ad

FIG. 3. Dimension error of the near-neighbor method.
Dots: results of numerical simulations for the error made
when estimating the dimension of randomly filled hypercubes
with dimension D. The number of points is N = 10*; the
scaling dynamical range is £ = 2. Solid line: prediction of
Eq. (14) with Vp = 2P, Dashed lines: Asd, + Asd, and
Apdn, — Asdn, respectively, with the statistical error A,dn,
given by Eq. (16).
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Ad

FIG. 4. Dimension error of the near-neighbor method.
Dots: results of numerical simulations for the error made
when estimating the dimension of randomly filled hyper-
spheres with dimension D. The number of points is N = 10%;
the scaling dynamical range is £ = 10. Solid line: prediction
Apd, of Eq. (14) with Vp = Kp. Dashed lines: Apd, + Asd,
and Apd, — A,dn,, respectively, with the statistical error A d,
given by Eq. (16). Dotted line: boundary error computed
from numerically evaluating Eq. (A3).

with the results of the simulation and demonstrates that
Eq. (14) may be performing poorly for large dimensions
D.

Figure 5 shows the results of simulations for the cor-
relation integral. The underestimate of the dimension is
slightly less than for the near-neighbor method, but, as
explained, the GPA method suffers from an ambiguous
choice of the scaling interval. The choice made in [4] of

Ad

FIG. 5. Dimension errror of the correlation integral. Dots:
results of numerical simulations for the error made when es-
timating the dimension of randomly filled hypercubes with
dimension D. The number of points is N = 10*; the scaling
dynamical range is £ = 2. Line: prediction of [4].
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the lower bound of the scaling interval has made the size
A,d. of the fluctuations of the dimension estimate com-
parable to that of Fig. 3. Shifting it to smaller r results
in an increase of A,d,.

When comparing the results of Figs. 3 and 5 it should
be realized that straight lines were fitted to the scaling
curves. As the abscissa of the fixed mass scaling function
in Fig. 2(a) spans a much larger dynamical range than
that of the fixed radius method in Fig. 1(a), the relative
dynamical ranges used in the dimension estimates are
very different.

IV. CONCLUSION

The underestimation of dimensions is a serious flaw
of scaling methods for dimension measurements. Due to
this effect, one may be tempted to conclude a small num-
ber of degrees of freedom when this number is actually
so large that it eludes measurement.

The underestimation is partly caused by geometric ef-
fects. We have shown that the fixed radius (the correla-
tion integral) and fixed mass methods (the near-neighbor
method) suffer from this problem to approximately the
same degree. However, the correlation integral has the
additional problem of the ambiguity in the choice of the
scaling interval. No such ambiguity is present for the
fixed mass method, where the scaling is always deter-
mined by the smallest distances where both the fluctua-
tions of the scaling function and the boundary effect are
smallest. .

We summarize our result in Fig. 6 by displaying the
systematic dimension error [Eq. (14)] for several values
of N. Assume an unknown dynamical system that has
produced N samples of a D-dimensional trajectory. If for
this set of N points an apparent dimension d' is found
with Ad < d'— D < 0, it falls within the systematic error

e
0 —
- 12 -
10
L 8 N\
< -5 .
32
A
-10+ 4 4
n | I 1 L I L
2 4 6 8 10
D
FIG. 6. Underestimation of dimensions using the

near-neigbor method in case of D dimensional randomly filled
hypercubes. The scaling range is £ = 2; the number of phase
space points varies from N = 10* to N = 102,

bound of the dimension estimate and it follows that the
measured trajectory cannot be distinguished from one
produced by space filling white noise. It is a striking
observation that the convergence of Aud to zero with in-
creasing N is so slow; hardly anything is gained when
increasing N from 10° to 1012,

It is also a striking and counterintuitive observation
that decisions about large dimensions can be made on
basis of a few phase space points. For example, Fig. 6
suggests that it is possible to distinguish D = 8 from
D = 10 using only 10 phase space points. From apply-
ing these methods of dimension estimate to experimen-
tal data we have learned that such a small error may be
too optimistic. It illustrates the necessity of considering
other sources of error in dimension estimates. A well doc-
umented source of error is the effect of time correlations
of the phase space signal. It has been studied extensively
in the context of the correlation integral [5].

The effect of the boundary on dimension estimates de-
pends on the shape of the boundary. From our simu-
lations it appears that the effect is slightly smaller in
spherically bounded spaces than in spaces with a cu-
bical boundary. Large-dimensional systems are in gen-
eral systems that explore many degrees of freedom, i.e.,
systems that are described by partial differential equa-
tions. Strings of coupled nonlinear maps of length L are
now widely accepted as faithful models of spatiotempo-
ral chaotic dynamics. For such systems the dimension
grows in proportion to their size; here D ~ L. It has
been suggested [12] that the chaotic attractors of cou-
pled map lattices for finite L may have zero thickness in
some directions of L-dimensional phase space. It is clear
that the existence of such internal boundaries would ag-
gravate the problem of dimension estimates using scaling
methods.

An interesting recent suggestion [13] has been to di-
vide out the effect of boundaries on dimension estimates
by normalizing the correlation integral on its value for
uniform noise in the given phase space. For the near-
neighbor method such a normalization may be done by
fitting measured scaling curves with Eq. (11). If this
method appears viable, dimension estimates may remain
a valuable tool for analysis of spatially extended nonlin-
ear systems. However, as the present paper again shows,
they should be applied with great caution.
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APPENDIX

In this appendix we will calculate the effect of the
boundary on the scaling of the nearest neighbor distance
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d(n), where n is the size of a random subset of the to-
tal set with V elements. The average nearest neighbor
distance for a subset of size n is

d(n) = /OR dl g(1) /Oldr rP(r;l;n)

R 2R—1
+/ dlg(l)/ dr rP(r;l;n), (A1)
0 1
with the structure factor
D 1 D—-1
=—=({1—-— . A
=3 (1-%) (a2)

The effect of the proximity of the boundary is contained
both in the structure factor g(!) and in the volume of hy-
perspheres V(r;1) that enters the definition of P(r;l;n).
In order to compute the boundary effect in hyperspheri-
cal spaces we first have to estimate the volume of a sphere
that is at a distance ! from the spherical boundary of a D-
dimensional phase space. This computation is illustrated
in Fig. 7. In the case that r < [, there is no intersection
and V(r;1) = KprP; for the case r > | we have

p [P 2y(D-1)/2
V(r;l) = Kp_1r / dy (1 —y?)P-v/
-1
1
+Kp_1RP dy (1-y*)P~V/2, (A3)
(R—h)/R

with b = (r? — I2)/[2(R — I)] (see Fig. 7). If r <« R
and | < R, we have h = 0 and the intersection of a
sphere with radius » with the spherically bounded phase
space with radius R is a plane. In this approximation the
curvature of phase space is neglected and finally gives

D
KDra

V(r;l) = Kp_yrP U

r<l
dy (1— y2)(D—1)/2, r> 1.

-1

(Ad)
From Eq. (A3) and Fig. 7, we see that 2R — | is the

FIG. 7. Geometry for the calculation of V(r;l) for r > [l in
the case of a hyperspheric phase space.
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maximum value of the radius r.

In the case of hypercubic spaces in principle we have
to take into account intersections with more than one
bounding plane. This would require the calculation of
(2D + 1)-fold integrals. We will use the approximation
that spheres intersect with a single bounding hyperplane
only. In our approximation, therefore, hypercubical and
hyperspherical phase spaces are treated similarly. The
only distinction is the substitution of the appropriate ge-
ometrical factor Vp that equals 22 in case of hypercubic
phase spaces and Kp for hypersherical spaces.

In the case of nearest neighbors the distribution func-
tion P(r;l;n) can be written as

P(r;l;n) = _9 exp[—npV (r;1)],

or (A5)

and performing partial integrations in Eq. (A1) gives
R
5(n) = — / dl g(1) (2R — 1) exp[—npV (2R — 1;1)]
0
R 1
+/ di g(l)/ dr exp[—nsV (r;l)]
0 0
R 2R—1
+/ dlg(l)/ dr exp[—nsV(r;1)]. (A6)
0 !

Because V(2R—!;1) = O(RP), the volume of phase space,
the first term is of order e™™ and will accordingly be
neglected. The computation of the remaining two terms
of Eq. (A6) is simplified if we write the structure factor

90 i 60 = (1~ é)D.

gy =-— (A7)

The second term of Eq. (A6) involves the volume V(r;1)
of spheres that are not intersected by a boundary. Using
partial integration,

R l
/0 allg(l)/0 dr exp [—npV (r;1)]
R
- / dl G(1) exp (—npKplP) . (A8)

Approximating G(I) = (1 — DI/R) and extending the
upper integration limit to infinity, we at once recognize
the emergence of two I' functions, one multiplying the
ordinary scaling n~'/P and the other one associated with
the boundary effect n=2/D,

The third term of Eq. (A6) involves the volume of a
sphere that is chopped by a bounding hyperplane. The
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double integral can be simplified considerably by taking
R instead of 2R — [ as the upper limit of the integration
over 7. This is justified because the neglected part be-
comes exponentially small with increasing n. The double
integral over the region [0, R;!, R] can be done by intro-
ducing a new integration variable a = [/r.

R 2R—1
/0 dlg(l)[ dr exp [—npV (r;1)]

R 1
= / dr r/ da g(ar) exp [-npKp_17" f(a)],
0 0

(A9)

where

f@= [ dy (1 — y?)(P-/2, (A10)

When the integration over r is extended to infinity, a
power series in /P results with T functions as coeffi-
cients. The lowest order term is n~2/P and involves the
zeroth order term of the power series expansion of g(I).
Collecting all terms up to order n~2/P we finally have
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o -afoen(e ) (5)
+n—2/DF<%) (%)Z/DA(D)

() ot

A(D) = / da f(a)~/",

(A11)

with
(A12)

which has been calculated numerically for different val-
ues of D. Using the fact that Kp/Kp_1 = f(1), it is
trivial to show that the term between square brackets
in Eq. (All) is positive. As argued in Sec. IITA, this
implies that the boundary proximity causes dimensions
to be underestimated. We note that the only way that
the shape of the phase space volume (hyperspherical or
hypercubical) enters in Eq. (A11) is through the geomet-
rical factor Vp. This is because of our assumption that a
sphere cuts a (much) smaller sphere as a plane. However,
for other geometries one would have to consider different
functions g(1).
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